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ABSTRACT 
A sizeable number of low‐income high school graduates 

enroll in colleges less selec ve than their academic 

qualifica ons would allow or forgo postsecondary 

altogether despite being college‐ready. One poten al cause 

of this “undermatching” is that some students have limited 

access to informa on about their college op ons. We 

hypothesize that providing students with more and be er 

informa on about the rela onship between their academic 

prepara on and college op ons may promote college‐going. 

The purpose of this study was to develop a predic ve model 

of admissions to public 4‐year ins tu ons using data from 

Texas’ statewide longitudinal data system in order to build a 

student‐facing tool that predicts admissions decisions. We 

sought to include only variables for which students have 

some control over, namely academic characteris cs, but 

compared the predic ve accuracy of this reduced model to 

more complex models that include demographic variables 

commonly used in higher educa on research. We show the 

reduced model successfully predicts admissions decisions 

for approximately 85% of applica ons. The addi on of 

demographic variables, despite showing a sta s cally 

significant be er fit of the data, do not substan vely change 

the predic ve accuracy of the model. We include a 

demonstra on of a data visualiza on tool built on this 

predic ve model using the open‐source R sta s cal 

so ware that can be used by students, parents, and 

educators. We also discuss causes for both op mism and 

cau on when using predic ve modeling to develop student‐

facing tools.  

 

Keywords:  admissions, predic ve modeling, student‐facing  

 
 

T he United States has made 
considerable progress in increasing 
college access rates for all racial 
and socioeconomic subgroups since 

the Civil Rights era (National Center for 
Education Statistics, 2016), but there is 
evidence that baccalaureate completion rates 
have actually declined over time (Bound, 
Lovenheim, & Turner, 2010) and disparities in 
baccalaureate attainment have remained 
stubbornly persistent (NCES, 2016). A 
common explanation of this phenomenon is 
that many high school graduates may not be 
academically prepared to access and succeed 
in college, and disparities in “college 
readiness” may contribute to inequitable 
attainment outcomes (Adelman, 1999, 2006; 
Cabrera & La Nasa, 2000, 2001; McPherson & 
Shapiro, 1998; Terenzini, Cabrera & Bernal, 
2001). However, a growing body of literature 
has also identified the issue of “undermatch,” 
in which students enroll in postsecondary 
institutions that are less selective than those 
for which they are qualified or forgo 
postsecondary enrollment altogether (Bowen, 
Chingos, & McPherson, 2009; Roderick et al., 
2008; Hoxby & Avery, 2012; Roderick, Coca, 
& Nagaoka, 2009; Smith, Pender, & Howell, 
2012). 
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Researchers continue to investigate the 
diverse causes of undermatch, but a 
compelling hypothesis is that students with 
limited access to information about their 
college options may be more likely to 
undermatch. Indeed, studies have found that 
high-achieving students are less likely to 
apply to and enroll in selective colleges if they 
attend small or rural high schools with fewer 
high achievers (Hoxby & Avery, 2012), and 
interventions that provide high-ability 
students with greater information about 
institutions which they are qualified for have 
been found to significantly increase the 
likelihood that they apply to selective 
colleges, are admitted, and matriculate 
(Hoxby & Turner, 2013). These studies 
suggest that providing students with more 
accurate information about their college 
options may be an effective strategy for 
increasing college-going overall and 
decreasing equity gaps in college access. 
Towards this end, the purpose of this study is 
to use predictive modeling to develop a 
student-facing tool designed to estimate the 
likelihood of university admission using data 
from Texas’ longitudinal student data system. 
The goal was to include only variables for 
which the student has some control over, 
namely variables tied to their academic 
achievements. These include variables such as 
GPA, SAT/ACT scores, the high school 
graduation plan a student completes, and the 
number of advanced and dual-credit courses 
passed in high school. We explicitly desire to 
exclude variables for which the student does 
not have control, such as race, sex, and 
parents’ socioeconomic status. However, such 

variables are commonly used in higher 
education research. Thus, in order to justify 
their exclusion from our modeling approach, 
we must first verify that their influence does 
not greatly affect the predictive performance 
of our reduced model. We show this by 
comparing a full model combining the 
desired academic variables and the control 
variables to a reduced model containing only 
the variables of interest. We demonstrate that 
the reduced model performs as well as the 
full model and correctly predicts admissions 
decisions for roughly 85% of public university 
applications in Texas.  
 
Academic Resources, Information, and 
Undermatch 
 
There is broad consensus in the literature that 
academic resources influence college access 
and completion rates, readiness for college is 
unequally distributed across racial/ethnic 
and SES groups, and disparities in academic 
preparation at least partially explain 
inequities in baccalaureate attainment 
(Adelman, 1999, 2006; Cabrera & La Nasa, 
2000, 2001; Kim, 2004; McPherson & Shapiro, 
1998; Terenzini, Cabrera & Bernal, 2001). 
However, a growing body of research has 
highlighted the magnitude and significance of 
“undermatch,” or the phenomenon in which 
students enroll in postsecondary institutions 
significantly less selective than those for 
which they are qualified or forgo 
postsecondary enrollment altogether despite 
being college-ready (Bowen, Chingos, & 
McPherson, 2009; Roderick et al., 2008; Hoxby 
& Avery, 2012; Roderick, Coca, & Nagaoka, 
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2009; Smith, Pender, & Howell, 2012). 
Although some studies suggest there may be 
risks of “overmatching” given that students 
who overmatch may be surrounded by peers 
with greater academic qualifications than 
them (Sander & Taylor, 2012; Thernstrom & 
Thernstrom, 1997), the majority of studies in 
this vein have concluded that overmatching 
increasing the likelihood of attainment (Alon 
& Tienda, 2005) or, conversely, under-
matching decreases the odds of attainment 
(Bowen, Chingos, & McPherson, 2009). 
 
Studies have shown that low-income students 
are significantly less likely to apply to a four-
year institution compared to their high-
income peers, even when controlling for 
academic readiness (Cabrera & La Nasa, 2001; 
Author, 2015; Hurtado, Inkelas, Briggs, & 
Rhee, 1997; Pallais & Turner, 2006). In their 
analysis of students’ pre-college pathways 
using data from NCES’ National Education 
Longitudinal Study of 1988, Cabrera and La 
Nasa (2001) identified the rates at which 
students from different SES backgrounds 
became “college-qualified,” graduated from 
high school, and applied to postsecondary 
institutions. Out of the pool of college-
qualified high school graduates, the authors 
noted that only 65.5% of student from the 
lowest-SES background applied to a four-year 
institution, 16% below the national rate for 
college-qualified students and 22% below the 
rate for college-qualified students from the 
highest-SES background. In other words, only 
two out of three college-qualified low-SES 
graduates applied to a four-year institution, 
compared to nearly nine out of ten high-SES 

graduates who were college-qualified. 
However, the authors concluded that the 
chances of lowest-SES students enrolling in a 
four-year institution “improve dramatically to 
the point of closely resembling the national 
average and the rate for highest-SES 
students” once low-SES students complete the 
task of submitting an application to a four-
year college or university (p. 121).  
 
Hoxby and Avery (2012) reached similar 
conclusions when analyzing the rates at 
which very high achievers, or students with 
an SAT score in the top ten percent of the 
national distribution and who had at least a 
3.5 GPA in high school, applied to selective 
colleges. The authors found that “a large 
number--probably the vast majority--of very 
high achieving students from low-income 
families do not apply to a selective college or 
university” (p. 1). However, these low-income 
high-achievers exhibited different application 
patterns. The group of high-achieving low-
income students the authors defined as 
“income-typical” had low application rates 
and rarely applied to selective institutions, 
while “achievement-typical” students applied 
to more colleges and more selective colleges, 
mirroring the application patterns for high-
income high-achievers. Put differently, very 
few high-achieving low-income students 
apply to a broad range of schools, many of 
which are selective, which is the common 
application behavior for high-income high-
achievers. The authors also found that income
-typical students were more likely to attend 
high schools with few other high achievers 
and which had a weak history of graduates 
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attending selective colleges. In other words, 
despite being high-achieving, these students 
were less likely to have the information and 
support need to promote their college 
aspirations and application behavior.  
Subsequent interventions designed to identify 
these high-achieving low-income students 
and provide them with greater information 
about their college options have been found to 
significantly increase these students college 
application rates, rates of application to 
selective institutions, and the total number of 
applications they submitted (Hoxby & Turner, 
2013). More importantly, high-achieving low-
income students have been found to the 
admitted to selective colleges at rates roughly 
equivalent to their high-income peers (Hoxby 
& Avery, 2012), and these interventions did in 
fact increase the selectivity of institution that 
low-income students matriculated to (Hoxby 
& Turner, 2013). These findings suggest 
providing greater information to high-
achieving low-income students about their 
college options may not only promote their 
college application rates and the selectivity of 
colleges to which they apply, but may also 
promote their college enrollment, decrease 
undermatching, and potentially reduce 
inequities stemming from socioeconomic 
background in the selectivity of colleges 
students enroll in.   
 
Although this line of research is promising, 
the proportion of low-income students that 
fall into the high-achievement category as 
defined by Hoxby and Avery (2012) is quite 
small – they estimate between 25,000 and 
35,000 students in each national cohort of high 

school graduates fall into this category. While 
encouraging high-achieving low-income 
subgroup’s college aspirations and 
applications is important, focusing 
exclusively on students with the academic 
qualifications needed to gain access to the 
most selective schools in the country may be 
an overly narrow approach. However, it is 
also much easier to design interventions like 
the one piloted by Hoxby and Turner (2013) 
for a few thousands students rather than the 
millions who graduate high school each year.  
This problem motivated the current study. 
We sought to develop a tool to accurately 
estimate students’ likelihood of college 
admission that could be used by educators, 
students, and students’ families to make more 
informed decisions about applying to college. 
Our goal was to make this tool useful to all 
students, not just very high achievers. And we 
also believed more generally that providing 
students with better information about the 
relationship between their academic 
performance and their likelihood of 
admittance into specific colleges and 
universities might motivate students to 
pursue a more challenging high school 
curriculum, earn better grades, and the like. 
However, this tool would only be useful if it 
was a valid and reliable predictor of students’ 
admissions decisions. The sections to follow 
describe our methodological approach for 
building and validating the underlying 
statistical models which the tool is founded 
upon.  
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Methods 
 
Data Source and Access 
The data used in this study was made 
available by the Texas Education Research 
Center (ERC) at The University of Texas at 
Austin. The ERC houses several datasets 
collected from the Texas Education Agency 
(TEA), Texas Higher Education Coordinating 
Board (THECB), and Texas Workforce 
Commission (TWC) and makes it securely 
available for scientific inquiry and policy 
making purposes. Access to the data can be 
acquired by submitting a research proposal to 
the ERC Joint Advisory Board, which reviews 
proposals based on whether data needed to 
address the research questions is available in 
the ERC, the strength of the proposed 
methods, and the potential benefits of the 
research to the state of Texas. Access to the 
data can also be granted directly by the Texas 
Legislature, as is the case for the current 
study. 
 
Data collected by THECB through the 
ApplyTexas application system was used to 
document students’ applications and 
admissions decisions. All public universities 
in the state are required to use ApplyTexas to 
accept applications from Texas high school 
graduates (see applytexas.org). Community 
colleges also use ApplyTexas but are not 
required to report data on applications to the 
state, preventing us from analyzing 
applications to community colleges. This 
dataset contains a record for every application 
students submitted through ApplyTexas, the 
admissions decision of the institution, and a 

host of other background demographic and 
academic variables. Specifically, data on high 
school ranking and SAT/ACT scores 
(discussed below) are collected through this 
system. It is important to note that in addition 
to ApplyTexas, institutions may offer 
additional application systems, such as the 
Common Application or institution-specific 
admissions processes, and students who 
apply to universities through those systems 
are not recorded in the ApplyTexas dataset. 
However, anecdotal evidence suggests that 
the vast majority of Texas high school 
graduates who apply to Texas public 
universities use ApplyTexas. 
 
Our cohort was defined using the Texas 
Education Agency's (TEA) high school 
graduation data. This dataset includes a 
record for every student who completed high 
school during a particular year. Data on 
students’ high school transcripts was 
collected by TEA. This data source includes 
information on the title of each course 
students attempted in high school, whether 
the course was advanced, whether the course 
was dual-credit, the subject of the course, 
whether the student passed the course, and 
the number of credits the student earned from 
the course. One idiosyncrasy of the dataset is 
that numerical course grade information was 
collected and reported during the 2010-11 and 
2011-12 school years but for no other years 
before or after. Given our use of a 2014 cohort 
of high school graduates (sample described 
below), we had data on grades for students’ 
freshmen and sophomore years of high school 
but not their junior or senior years. 
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Additionally, the dataset only contains 
information for courses taken through Texas 
high schools, so students who transferred into 
Texas during high school would not have 
their prior course taking recorded in the data.  
The TEA data also contains a file with 
detailed information on students’ 
demographic backgrounds. This dataset was 
used to determine students’ race/ethnicity, 
sex, and economic background (free-or-
reduced lunch eligibility). Although the 
ApplyTexas dataset also contains information 
on students’ socio demographic backgrounds, 
certain variables appear to have significant 
amounts of missing data whereas the TEA 
data was far more complete.  
 
Sample 
The sample used in the current study is a 
cohort of students who graduated from a 
Texas high school in 2014 and who applied to 
at least one public university in the state of 
Texas for admissions during the fall 2014 
semester. Of the 302,269 students in the 
graduating class, 103,860 students (34.36%) 
submitted at least one application, and 
200,973 individual applications were 
submitted. Demographically, the sample was 
6.1% Asian, 15.0% Black, 41.7% Hispanic, 
33.0% White, and 4.1% other (Native 
American/Alaskan Native, Native Hawaiian/
Pacific Islander, and multiracial students were 
combined into this category due to their small 
sample sizes), 55.1% female compared to 
44.9% male, and 41.3% economically 
disadvantaged compared to 58.7% non-
disadvantaged.  
 

From the original sample of applications, we 
excluded all instances where the students 
withdrew their applications since they did not 
receive an admissions decision in that case, as 
well as applications where the student was 
admitted under the top ten percent policy. 
This was done for two reasons. First, all 
students in the top ten percent receive 
automatic admission, meaning there is no 
variation in the outcome variable for this 
subgroup. A predictor variable representing 
whether students were in the top ten percent 
would therefore be dropped from the 
statistical model. Second, because these 
students are guaranteed admission, the tool 
we developed would be irrelevant to this 
population. Excluding top ten percent 
students, withdrawn applications, and a small 
percentage of students with missing data 
(discussed below) left 110,620 application 
records. We further split this sample into 
training and test sets at a ratio of 80/20, with 
the test set used to analyze the performance of 
the models developed on the training set. 
 
Variables 
The outcome variable in the study is whether 
students were admitted to a public university 
in Texas to which they applied. The university 
applications dataset includes a variable that 
indicates the admissions decision for each 
application. This variable has seven possible 
values: 1) accepted and ranked in the top 10% 
of graduating class; 2) accepted and ranked in 
the 11-25% of graduating class; 3) accepted on 
provisional basis, met requirements; 4) 
accepted on provisional basis, did not meet 
requirements; 5) accepted based on other 
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criteria; 6) rejected; 7) student withdrew 
application. As mentioned above, students 
accepted through the top ten percent rule and 
those with withdrawn applications were 
excluded. The original admissions decision 
variable was converted into a dichotomous 
variable, with the rejected (6) value being 
recoded into not admitted (“0”) and the 
values of 2-5 being recoded as admitted (“1”).  
The five academic variables of interest 
included in the models are the student’s high 
school GPA, ACT/SAT score, number of 
advanced courses, number of dual credit 
courses, and high school graduation level. Of 
the primary variables, GPA was the only one 
to present particular difficulties. As 
mentioned above, grade data was only 
available for the years 2011 and 2012, years 
when our cohort would have been freshman 
and sophomores, and it was from these values 
that GPA was calculated. Because some of the 
cohort were not attending a Texas school 
during these years, GPA was missing for 
those application records (n = 2,766, or 2.4% 
of sample) and were dropped from the 
analysis.  
 
SAT/ACT scores were recorded in the 
ApplyTexas application. Some students only 
reported an ACT score, some reported an SAT 
score, some reported both, and some reported 
neither (14,621 application records, or 7.3% of 
the total sample of 200,973 applications). In 
order to include a single variable in the 
model, SAT scores were converted to the ACT 
score range of 11-36 using SAT-ACT 
concordance tables (College Board, 2016). It is 
also noted that multiple applications from the 

same student may contain different values for 
this variable, indicating the student retook the 
given test and submitted improved scores. 
We used the SAT/ACT score the student 
submitted to the institution she or he applied 
to, rather than the highest score they 
submitted across institutions. Applications 
without SAT/ACT scores were dropped from 
the sample. 
 
The number of advanced and dual-credit 
course variables are measured by counting 
the number of credits students earned for 
courses indicated as advanced or dual-credit 
in the TEA data. A full year course is 
generally worth one credit in the data but 
may be broken up into two semester-long 
courses each worth 0.5 credits, for example. 
Although schools and districts may have used 
different criteria for determining whether 
students passed courses, failed courses were 
awarded zero credits and were therefore 
excluded in the calculation of these variables.  
At the time when this cohort was graduating 
from high school students could earn one of 
four different types of high school diplomas: 
distinguished, recommended, minimum, and 
individualized education plan (IEP). Roughly 
70% of the cohort completed the 
recommended plan. The distinguished plan 
included additional rigorous courses and 
approximately 15% of students earned that 
diploma. The remaining 15% of students 
completed the minimum plan or an IEP. Most 
frequently, students with disabilities complete 
IEPs. Because of the small number of students 
earning IEPs, the minimum and IEP 
categories were collapsed into a single 
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category. This three-level variable 
(distinguished, recommended, and 
minimum/IEP) representing the diploma 
students earned was included in the models 
as an additional measure of curricular rigor.  
There were 35 public universities represented 
in the original dataset, but four of these were 
small schools where only a handful of 
applications were received from our cohort of 
students. We grouped all schools with < 100 
applicants into an ‘other’ category. The 
statistical models include institutional fixed 
effects, which essentially use the institution’s 
overall admission rate to adjust the students’ 
baseline odds of admission.   
As our primary purpose was to develop a 
student facing tool to estimate admissions 
decisions we desired not to include 
demographic variables in the models, both 
because students have no control over their 
demographic backgrounds and because we 
would not want students to see their odds of 
admission change depending on their race, 
SES, or sex. However, because prior literature 
has shown students’ demographic 
characteristics at times shape their college-
going behavior, we sought to further validate 
the tool by fitting statistical models that 
controlled for race, SES, and sex. Race has 
been grouped into 5 categories: White, Black, 
Asian, Hispanic and other (American Indian/
Alaskan Native, Native Hawaiian/Pacific 
Islander, Multiracial, or Unknown). 
Socioeconomic status was proxied with a 
binary variable indicating whether students 
qualified for free-or-reduced price lunch in 
high school. A dummy variable for males was 
included with the reference group being 

females, as Texas does not allow students to 
report non-binary gender identities.  
Model Validity and Comparisons  
In much quantitative educational research, 
and in particular studies that use some form 
of regression modeling, the primary interest is 
often the relationship between independent 
variables of theoretical import and the 
outcome. These relationships are assessed 
through the magnitude and direction of the 
coefficients, as well as whether the estimates 
are statistically significantly different than 
zero at whatever threshold the researcher 
chooses, most commonly p < .05. At times 
researchers present values such as R2, the 
proportion of variance in the outcome 
explained by the model, or various fit indices 
to assess how well the model fits the data, but 
rarely are those statistics the main focus of the 
research. However, in our case the accuracy 
and reliability of the model(s) are far more 
important than the relationship between 
individual predictors and the outcomes, given 
our goal of creating a tool students can 
reasonably rely upon to estimate admissions 
decisions. We therefore employed a variety of 
statistical techniques for assessing the validity 
and performance of these models.  
We first checked for potential issues of 
multicollinearity, or when predictor variables 
in the model are highly related to each other 
(Belsley, Kuh, & Welsch, 1980; Greene, 2011), 
by computing variance inflation factors (VIF) 
for each of our models. The VIF values 
represent how much the variance is increased 
due to issues of multicollinearity. VIF values 
greater than 10 suggest the possibility that 
multicollinearity may be affecting the results, 
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Table 1. 
Results of Logistic Regression Models 
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Figure 1. 
Predictive Admissions Tool Dashboard 
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research questions, such as whether the 
model is more or less accurate for other 
cohorts, whether the relationship between 
specific academic variables and university 
admissions has changed over time, and 
whether demographic variables are more or 
less impactful during other periods. 
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